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ON THE ANALOGY BETWEEN THE WAVE MOTIONS 

OF CHEMICALLY ACTIVE AND TWO-PHASE MEDIA* 

A.L. Ni 

Nonlinear asymptotic equations that describe the wave motions of two-phase media 

consisting of a gas and solid heavy particles suspended in it are derived. Within 

the framework of the theory developed, it is shown that there exists an exact mathe- 

matical analogy between the motions of two-phase and chemically active media. HY 

means of this analogy, it is possible to pass from well-known results for chemically 

active media to two-phase systems without making any changes. 

Laws governing the behavior of pressure waves in chemically active media have now been 

rather well-studied. It has been established /l/ that the propagation of acoustic pulses is 

accompanied here by dispersionofthe rate of transmission of the signals,which lies betweenthe 

"frozen" and equilibrium speeds of sound and coincide with them in the limiting cases of high- 

and low-frequency waves, respectively. In the linear approximation, the influence of disper- 

sion on lengthyperiodsof time is equivalent to the effect of bulk viscosity. That is, the 

fact that the chemical composition is not in equilibrium leads to anomalous expansion of the 

shock wave front. Nonlinear analysis /2/ gives more meaningful information about the evolu- 

tion of weak shock waves and rarefaction waves. The results of /2/ were generalized in /3,4/ 

for matter with an arbitrary number of chemical reactions. The analogy between the wave mo- 

tions of chemically active and two-phase media within the framework of linear equations has 

also been discussed in /5-l/. Nonlinear analysis of slightly perturbed supersonic two-phase 

currents has also been conducted /5/. The approach used here was proposed in /8/ in connec- 

tion with the study of nonequilibrium currents. However, other results /5/ lack a degree of 

visualization, since all the studies were conducted using semi-characteristic variables,while 

the kinetic equations are linear; the role of nonlinearity is seen in the transition to the 

physical plane, which may be undertaken by means of finite fomlulas only in small regions of 

the current. 

1. Equations of motion. We neglect the influence of the particles on each other and 

their natural volume. We also assume that the density of the material of the particles pi is 

much greater than the density of the gas p, and that intra-phase interaction reduces to the 

reciprocal friction of the gas and particles exclusively. Heat exchange between the phases 

will not be considered, for the s*e of simplicity. As will clearly follow from the succeed- 
ing arguments, the inclusion of heat exchange into a model within the frameworkof small per- 

turbations is equivalent to the introduction of one more relaxational parameter and may be 

taken into account as in /3,4/. The equations of motion of the mixture may be taken in the 
form /9/ 

aP v-l 
_+??_&+y v - 1 

at p&,=0, $-++-,-- plL=@ (1.1) 

l%++p ,&=-I3 p$+prr-$f -g 

GF + u+-+ --us), 

-g+2gA++-Ln 3=o 

(the last equation of the system is a simple corollary of the equation for the conservationof 
the mass of the particles). Here r is the distance from the center, axis or plane of symmetry, 
and u and p are the speed and density of the gas; the subscript "s" indicates the correspond_ 
ing variables referred to the particle gas; p is the pressure; I' is the temperature; s is the 
specific entropy of the gas; and n is the number of particles per unit of volume. The para- 
meter v = I, 2,3 for currents with a plane, axis, or center of symmetry, respectively. 
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The functional relations p = p (p, s). T .-: 7~ cbI. S) are tile mlssiny equations “f tide- cji.it~ ,.:~: 
the gas. 

To close the system (l.l), 
friction. 

it is necessary to determine the bulk force of t-h@_ ~r,t_ra-l_i;a;. 

For the sake of simplicity, we will assume that the particles are spheres with 
radius a. Then the interaction force f between a solid particle and the nonstationary gas 

flow may be represented in the form of a sum of the Stokes force, Basset force, and inertia? 
force, which takes into account the influence of added masses /lo/. Simple estimates show 
that the last two forces must be taken into account in the equations of motion together with 

the Stokes force at times on the order of u”/pq (11 is thr3 dynamic viscosity coefficient of 
the gas). But at such times the variation of the velocity of the particles, for example, clue 

to interaction with the gas is on the order of up p,"(u is the velocity of the partlclr rela- 

tive to the gas). This means that the basic contribution to the intra-phase interactron 11~ 
this case is provided by the Stokes force; by taking into account the Basset force and addrii 
masses, we are led to make small corrections on the order of p/p,', Note that it is precisely 
the Basset force which has preferred /ll/ for analyzing the wave motions of gas mixtures; us 
was shown above, such an assumption is invalid for heavy particles. Finally, we set 

f = na(u, - U), a = Gnl)a 

2. Speed of sound. Before passing to the derivation of the basic nonliriear equations 
that describe the wave motion of a medium, we will study certain properties of the linearized 
system (1.1). Everywhere below the zero subscript will denote parameters of the medium in the 

initial quiescent state, and the prime will indicate deviations of the parameters of the mix- 
ture from the unperturbed state. Linearization of (1.1) yields (V = 1) 

Substitution of the resulting solution in the form 

A = &,e'(@*-~'), A = (us’, ps’, u’, p’, s’) 

where A, is a constant column vector and subsequently setting the determinant of the resulting 

system of linear algebraic equations equal to zero yields the characteristic equation 

The multiple root w = U corresponds to the paths of motion of the gas and particles. 

Setting the expression within the brackets equal to zero, we obtain in the limiting cases 

(I) = fkao if Q $3 max (noalp,, ~z~cz,‘~,~~) (2.1) 

o=tliao p0l(p0 + p,0) if ~<:in(nou/p~, 41a/p,,) (2.2) 

Thus, we conclude that in a two-phase medium transmission of signals is accompanied by 

dispersion; the rate of propagation of the acoustic pulses coincides, in the limiting cases, 

either with the frozen rate of sound U, or with the equilibrium speed a,, further 

Below we will use precisely such a terminology to denote the correspondingspeedsofsound. 

In a rapid high-frequency wave the solid particles are unable to follow the motion of the gas; 

in a slow low-frequency wave the velocity of the particles is equal to its equilibrium value, 

or the velocity of the gas. Here the profound analogy between wave motions in two-phase and 

relaxational mixtures is obvious, further the velocity of the particles in two-phase media is 

equivalent to the completion of a chemical reaction /2/. A detailed survey of studies on the 

acoustics of heterogeneous media may be found in /7/. 

3. Asymptotic expansions. We now study different limiting modes of propagation of 

perturbations in two-phase media using the expansion of the required functions in a series in 

several small parameters. 
Everywhere below we will assume that the valuesofthe characteristics of the current dlf- 

fer little from the corresponding values for the quiescent state. We introduce a coordinate 

system moving with velocity c0 whose value will be selected as a function of the particular 

situation. 
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we will suppose that the current in the medium may be represented as a short wave, i.e., the 
width of the disturbed region is small by comparison with the distances at which the wave 

propagates. Accordingly, we introduce dimensionless coordinates by the formulas 

t = + f, r = cot + Lr’ (3.1) 
0 

where L is the characteristic dimension of the flow in a movable coordinate system and A is 

a small parameter. 
Let the small parameter E determines the amplitude of the disturbances propagatinginthe 

mixture. Then, passing to dimensionless dependent variables yields 

U, = EC&', P, = Pro (1 + E&I), U = &C&L’ (3.2) 

P = Pa (1 + eP')> P = PO (1 t EP’), S = S” (1 t ES’) 

at = qo (1 + EQf’), Q, = a,0 (1 + Eae') 

Further, we will use equations that are linear combinations of the second, fourth and 

fifth equations of the system (1.1): 

dr -I_ p -+ a,) J$ + pa, i .h- ap 
L dt 

$(u+ a,)++(V-l)~] = 

-$ + (u + a,) $- i pa, [+ f (u + a,) $1 + 

(3.3) 

4. Quasi-frozen mode. Everywhere below the prime will be omitted from the dimension- 

less variables. We will assume that the equilibrium and frozen speeds of sound differ by a 

finite magnitude or, what is the same thing, pSO - po. Let us consider the frozen short wave 

that propagates, in a linear approximation, through the quiescent medium with velocity am. 
Accordingly, in (3.1) and (3.2) we set cO = ejO and substitute them in the equations ofmotion 

(1.1). Then, ignoring higher order of smallness and integrating the resulting linear equa- 

tions, we arrive at the formulas 

I'0 
P = ponlo' -pp. p=u, ps=uj (4.1) 

The first equation in (4.1) indicates that gas compression is reversible. The second 
equation is analogous to the Riemann relation in a simple wave. Note that formulas (4.1) do 
not contradict the energy equation, since in this approximation s = 0. With the last equation, 
we find that 

a, = 

thus 

The equation for the velocity of the particles in dimensionless variables is described 

In the quasi-frozen mode , we find that N,.<l in accordance with inequalities (2.2). 

Then from the last equation it follows that u, = 0. Retaining the principal terms in the 
first equation of (3.3) and using (4.1) as well as an expression for the increment in the 
speed of sound al, we obtain the nonlinear equation 

(4.2) 

which is entirely analogous, in terms of structure, to equation (3.5) in /2/, which describes 
the quasi-frozen wave in a chemically active mixture. In the plane case, for example, it 
yields a solution that attenuates along both characteristics according to an exponential law. 
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5. Quasi-equilibrium mode. To study a quasi-equilibrium short wave, we set I‘,) 
in (3.1) and (3.2) in accordance with the conclusions of the linear theory. We 

il._,. 

that (4.1) are true also for the quasi-equilibrium situation. 
x,ay :ie ri fv 

The equation for the velocity of the particles may be reduced to the fort. 

2 = N, (II, - n). N, _ non’, 
o,d?,o 

! 5. L 

further that N, > 1, as follows from (2.3). Substituting (5.1) in the equation for the in- 
crement in the entropy yields s- E/N,. Recalling the definition of the equilibrium speed of 
sound, we find after some transformation that 

1 

ar=af+T p,o+po p,o (p- p,) ( c, . L’ ) 

From equation (5.1) and the condition N, > 1, we have 
(4.1) we find that a, = af 

u, = u -/ 0 (UN,). Hence, from 
to within high-order infinitesimals. 

To derive the nonlinear quasi-equilibrium wave equation, we will use the second equation 
of (3.3). Substituting (3.1), (3.2), (4.1), and (5.2) in it and discarding high-order in- 
finitesimals, we obtain 

The last equation is entirely identical to (4.2) of /2/, where it was obtained for the 

purpose of describing quasi-equilibrium waves in chemically active media. On the other hand, 

equation (5.3) was derived and studied /12-14/ for the analysis of the flow of a neutral gas 

that exhibits viscosity and heat conductivity. 
The equation studied in /12-14/ turns into (5.3) if a correspondence is established be- 

tween the coefficients in accordance with the following rule 

Here : is the second viscosity coefficient; k, heat conductivity coefficient; cp is 

specific heat capacity at constant pressure and x is Poisson adiabatic index. Hence follows 

an exact mathematical analogy between the two processes. According to this analogy, the in- 

fluence of the relative motion of the gas and particles on the quasi-equilibrium propagation 

of nonlinear acoustic pulses leads to an effect equivalent to the action of longitudinal vis- 

cosity and heat conductivity. Simples estimates show that the effective viscosity of a two- 

phase medium determined by the quantity IV, may markedly exceed the natural viscosity of the 

gas, as determined by the coefficient Re. 

6. Media with nearly equal speeds of sound. Below we will derive an equation 

that is uniformly suitable for the description of the propagation of acoustic pulses in a two- 

phase medium. It incorporates both cases described in Sects.4 and 5 as limiting cases and 

may be used to describe the continuous transition from one mode to the next. To properly 

derive a unifomlly suitable equation, we will assume that the equilibrium and frozen speeds 

of sound are nearly equal or, what is the same thing, that p,,,/p, <(I. The difference between 

the two speeds of sound will be characterized by the small parameter E,*. 

Let us introduce a coordinate system moving with speed c,, and determined by the formula 

co - ato = E,%,OCO, Co - a,~ = E,%& (6.1) 

where (J/,, and ceO have the order of unity. 
Linearization of equations (1.1) again leads to (4.1). 

We have the estimate S- tea2 from the equation for the increment in entropy. 

The equation for the velocity of the particles in dimensionless Variables 1s re-Written 

thus: 

&Jar = N, (IL, - u) (6.2) 

Note that in this approximation N, and N,coincide to within high-order of smallness. 

To derive the missing relations, we return again to equations (3.3). 

the first of the relations from (3.3) yields (following some simplificationsi 
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Analogously, from the second relation we find that 

2 (E~OU - E,*U,0) $ + A C 
2% +(v-*i)f] 2.$N,(U,-~I()-!$!L~ 

Equations (6.3) and (6.5) are equivalent. In fact, it follows from (6.1) that 

(6.4) 

ea3 (5ro - “&J co =aell - a,0 

Hence, recalling the definition of a, and 01 and using the 

ea'Qm = 'a*po - + P,&" 

inequality psO&pU, we find that 

Substitution of this expression into (6.3) reduces it to the form (6.4). 

Eliminating from (6.2) and (6.3) the velocity of the particles u,, we obtain a single 

second-order equation in the unknown function U: 

From (6.51, we obtain the limiting modes (4.2) and (5.3). Suppose that c,O = 0 and 

F,“N, - e, N, < 1. Retaining in (6.5) the principal terms and integrating it once, we arrive 

at (4.2). If cJeO = 0 and E,~/N, -E, N, > 1, then (6.51 turns into (5.3). Equations (6.21and 

(6.3), along with (6.51, are entirely analogous to previous equations /2/ obtained for the 

description of short waves in chemically active mixtures. Therefore, all the conclusions re- 

garding waves in chemically active mixtures may be carried over to two-phase systems without 

any changes. 
Let us briefly list the basic conclusions. In two-phase media, two types of shock waves 

are possible: waves with complete dispersion propagate at speeds of a,, < D < a/o, and compres- 

sion in such waves is realized continuously; waves with frequency dispersion have speeds D> 

Q!Ll and the disturbance zone in such waves is bounded by a front at which the parameters of 

the particles remain unchanged, but at which the quantities that describe the gas are discon- 

tinuous. The solution for two-phase mixtures may be described by analogy with the problem of 

a centered rarefaction wave in a gas briefly as follows. At the initial stages, where ,$',41 

the particles are not pulled along by the gas and the solution is essentially that of a rare- 

faction wave in the pure gas. When 1%',>1 in the basic current region, except for the boundary 

layers, the velocity of the particles is equal to the velocity of the gas and the accelera- 

tion of the mixture is realized in a centered equilibrium rarefaction wave. In the interval 

between the leading equilibrium and frozen characteristics the parameters of the mixture tend 

exponentially with time to their values in the quiescent state. 

The existence of partially and completely dispersed shock waves in gas and liquidsystems 

and its experimental verification have been demonstrated /6/. 

Above we considered solely the influence of dynamic slippage of solid particles relative 

to a gas on the wave processes in two-phase systems, since in this approximation the temper- 

ature disequilibrium of the medium is entirely equivalent to the effect of a chemical reaction 

/2/ (under the condition that the Newton-Rikhmanlawis valid for the description of intra- 

phase heat exchange). In light of the foregoing, we may conclude that the combined effect of 

dynamic slippage and intra-phase heat exchange is equivalent, within the framework of this 

approach, to the introduction of two chemical reactions, /3,4/. Depending upon the relation 
between the characteristic times of the temperature and velocity relaxation it is possible for 

the wave packets to separate into time layers and for the shock waves to have a band structure 

/15/. (*) See next page. 

The author thanks V.E. Fortov and A.N. Dremin for interest in the present paper and sup- 
port. 
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